首页> 外文OA文献 >Compound semiconductor alloys: From atomic-scale structure to bandgap bowing
【2h】

Compound semiconductor alloys: From atomic-scale structure to bandgap bowing

机译:复合半导体合金:从原子尺度结构到带隙弯曲

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Compound semiconductor alloys such as In$_{x}$Ga$_{1-x}$As, GaAsxP$_{1-x}$, or CuIn$_{x}$Ga$_{1-x}$Se$_{2}$ are increasingly employed in numerous electronic, optoelectronic, and photonic devices due to the possibility of tuning their properties over a wide parameter range simply by adjusting the alloy composition. Interestingly, the material properties are also determined by the atomic-scale structure of the alloys on the subnanometer scale. These local atomic arrangements exhibit a striking deviation from the average crystallographic structure featuring different element-specific bond lengths, pronounced bond angle relaxation and severe atomic displacements. The latter, in particular, have a strong influence on the band gap energy and give rise to a significant contribution to the experimentally observed band gap bowing. This article therefore reviews experimental and theoretical studies of the atomic-scale structure of III-V and II-VI zincblende alloys and I-III-VI$_{2}$ chalcopyrite alloys and explains the characteristic findings in terms of bond length and bond angle relaxation. Different approaches to describe and predict the band gap bowing are presented and the correlation with local structural parameters is discussed in detail. The article further highlights both similarities and differences between the cubic zincblende alloys and the more complex chalcopyrite alloys and demonstrates that similar effects can also be expected for other tetrahedrally coordinated semiconductors of the adamantine structural family.
机译:化合物半导体合金,例如In $ _ {x} $ Ga $ _ {1-x} $ As,GaAsxP $ _ {1-x} $或CuIn $ _ {x} $ Ga $ _ {1-x} $由于仅通过调节合金成分就可以在很宽的参数范围内调节其性能,所以Se $ _ {2} $越来越多地用于许多电子,光电和光子器件中。有趣的是,材料性能也由亚纳米级合金的原子级结构决定。这些局部原子排列表现出与平均晶体学结构的显着偏差,其特征在于不同的元素特异性键长,明显的键角弛豫和严重的原子位移。后者尤其对带隙能量有很大影响,并且对实验观察到的带隙弯曲起重要作用。因此,本文回顾了III-V和II-VI闪锌矿合金和I-III-VI $ _ {2} $黄铜矿合金的原子尺度结构的实验和理论研究,并解释了在键长和键方面的特征性发现。角度松弛。提出了描述和预测带隙弯曲的不同方法,并详细讨论了与局部结构参数的相关性。该文章进一步强调了立方晶状闪锌矿合金与更复杂的黄铜矿合金之间的相似性和差异,并表明对于金刚烷结构族的其他四面体配位半导体,也可以期待类似的效果。

著录项

  • 作者

    Schnohr, Claudia;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号